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Abstract— This is a review paper showing different metalfactis removal methods which are used mainly in ¥-ra
CT. This method are mainly consists four stage guace like filtered back projection, segmentatiBestoration and
merging the segmented metallic object image with fihered back-projection reconstructed image frthra image.
Many methods are presented for removal of metdhats like projection completion method, FilterBdck Projection
(FBP) method, Maximum Likelihood TRansmission meth(ML-TR), Iterative reconstruction method, Linear
Interpolation (LI) method.

Index Terms- Filtered Back Projection (FBP) method, Iteratieeonstruction method, Linear Interpolation (LI)thwd,
Maximum Likelihood TRansmission method (ML-TR), Rrtion Completion Method.

|I. INTRODUCTION

The main device in dental radiology is the X-ray
projection image, which gives the structure of hewdt
tissues and Teeth. However, certain diagnostic and
operative tasks often re-quire more precise knogéedf
the three-dimensional (3-D) structure of oral tessthan
is available in a single X-ray pro- jection image @
panoramic image [1, 2]. The artifact is a radialise
generated from the part of the metal when takir@Ta
image of a metalliferous verifiable object. [3]

In X-ray computed tomography (CT), the presence of
strongly attenuating objects - such as dental d#in
surgical clips - causes typical streak artifacts the
reconstructed images (figure 1).[4]
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Figure 1: An examl of metal streak artifacts in X-ray 3

computed tomography. 2
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According to B. De Man[5] main sources of metal E

artifacts are classify in four categories: Physizsed =

which include beam hardening and under sampling 3
artifacts, Patient based which include metallic amation
artifacts, Scanner based in which artifacts caukgd

detector sensitivity and mechanical instability e(sm Detector instability

below table 1), Spiral based in which artifactsaue to

spiral interpolation [6, 7] Table 1: Sources of metal artifacts in X-ray

computed tomography.
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In the following sections we describe the overviefv
various methods which are useful for reduce metal
artifacts. In order to reduce the metal artifattere are
some approaches [3] based on signal processingy Man
algorithms are presented for reduction of metabadtr
artifacts in x-ray CT. Mainly those algorithm wotken
reconstruction of projection data and segmentatibn
image in metallic and non-metallic objects and Ifina
restoration technique which used for restore thegien
information by means of reduce the artifacts byngsi
filtered back projection method for reconstructifdj,
iterative  reconstruction method [9], projection
interpolation method [10]. For segmentation purpose
they used thresholding technique [11].

The majority of MAR-methods consist of a modified
reconstruction algorithm, in which metal objects ar
usually considered opaque and data correspondiray$o
through the metal objects are defined wmssing
data.[10].Typically, MAR algorithms comprise two
steps: a) metal trace identification, in which the
projections corrupted by metallic implants are tifexd
and b) artifact reduction, through which the idbed
missing projections are compensated for or treated
such a way that the associated streaking artifacés
mitigated.

Metal traces are conventionally identified by
segmentation of metallic implants in FBP recong#dc
images using thresholding [11] or clustering teqhes
[12], followed by reprojection of the obtaineaktal-only
images onto the projection or sinogram domain. F8P
based on the assumption that every pixel can be
characterized by a single parameter,the linear
attenuation coefficient, and that the logarithm tbé
measurement is the line integralof8].

Other approaches are based on segmentation of metal

traces directly in raw sinogram data using actioetours
[13], curve detection [14] and Markov random field
(MRF) [10] techniques. The second step of MAR
methods has been mainly explored by two classes of
algorithms: projection completion and iterative gea
reconstruction.

Projected completion aims at interpolating the migs
projections from their neighbors through linearbicu
spine and wavelet [15] interpolations or iteratiire
painting techniques using curvature-driven diffusitotal
variation (TV) [13, 16], and wavelet regularizatifli’].
Bal and Spies proposed to replace the missing ¢iiojes
by the projections obtained from the forward proec
of a tissue-classified CT image, namely tissue-class
model orprior image. The problem with this approach is
that the prior sinogram projections over missingions
(metal traces) are not well fitted with the projent of
the original sinogram in immediate neighboring oegi
and hence, there is always a risk for discontiesitand
generation of new artifacts. Recently, to solve fithess
problem, referred to as normalized MAR (NMAR), the
original sinogram is normalized by the syndromeaér
image, thereby flattening neighboring projectionker,

the missing data are linearly interpolated on #®uiting
sinogram is de-normalized. Projection completiors ha
also been combined with algorithms that exploit the
information hidden in low- and high-pass filtered
sinograms [15] or low- and high-pass filtered
reconstructed images. This class of algorithmsfieno
fast and computationally appealing, however, if not
efficiently implemented, these techniques mightdpice
new artifacts. In fact, their efficiency depends loow
robustly they can exploit the still available prijen data
even a prior knowledge in the recovery of missiatad

On the other hand, iterative reconstruction athars
[9] establish another class of algorithms thatjkenFBP,
attempt to frame the reconstruction problem in g tixat
more closely resembles reality. They can be adaged
missing data situations by down-weighting [8], igng
the contribution of the corrupted projections, ande
tailored to polychromatic propagation models inesrtb
reduce both beam hardening and metallic artifdd8,
However, this class of algorithms cannot entirely
eradicate severe metallic artifacts; hence thetration
and combination [20] with projection completion
techniques have also been investigated. But iterati
image reconstruction techniques are still memory-
demanding and computationally intensive. To redhee
computational complexity of this class of MAR
algorithms, a region-based iterative reconstruction
method in this fully polychromatic reconstructiorodel
is used for metallic regions, while a simpler
monochromatic model is used in other regions. Wasth
noting that the model-based iterative algorithmeehaso
been successfully applied for sinogram restoratond
beam hardening correction.

Il. METHODS

| terative reconstruction method

We also apply iterative reconstruction [9] to regluc
metal streak artifacts. The major advantage of this
approach is the possibility to use a model of the
acquisition, taking into account polychromaticisgatter,
noise, and any other imperfections. A general fiveza
reconstruction scheme is shown in figure 3.

In this method first we acquired image and
calculated sinogram data. Then we compared this
sinogram data with measured sinogram. If both are n
matched those data are transformed in image domain
further and corrected this. Now corrected image
reconstructed again and again until calculated and
measured data are not matched.
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Figure 3: Iterative Reconstruction

So disadvantage of this method is memory demarfding
storage of all those data and time computationeis/ v
much.

Maximum Likelihood TRansmission method
(ML-TR)

Basic theory [8, 10]

For monochromatic acquisition model the basic idea
given a set of transmission measureméyid_,, find
the distribution of linear attenuation coefficients
{yi}lethat maximizes thdog-likelihood (logarithm of

the likelihood). [10]

I
L= Z(yi- I(T) = T2) oo o (1)
i=1

Where T, is the expected number of photons detected
along projection linei given the current reconstruction
{u;}. Y,is assumed to be a Poisson realizatiod/pfa
simple acquisition model for transmission tomogsajsh
given by

J
Y, = b,exp _Zlij.“j
=

Where is the number of photons that would be detkict

the absence of absorber (blank scan) and is tleetw#
intersection length of projection line with pixek i
measured by a calibration scan. In figure 4 we see
simulated energy spectrum of intensity, where b,is
total energy that would be detector by detector.

The algorithm is based on the transmission maximum-
likelihood algorithm (ML-TR) [8, 10and 21]. ML-TR
reconstructs an attenuation image by optimizing the
likelihood, assuming that the measured detectal-oegs
have a Poisson distribution.
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Figure 4: the line represents a simulated spectrunb ;5
(normalized) provided by Siemens

As a result, ML-TR attributes less weight to lowiob
detector read-outs, making the algorithm inherently
robust against other sources of artifacts that raost
prominent in directions of low counts, such as beam
hardening, scatter, and partial volume effect.

In this method first take measured data and ongkbla
sinogram data, compare both data and then upd#e da
is reconstructed using linear interpolation method.
Finley reprojection of them is taken and this pchae is
done until sufficient data is not get.

1. [ terative maximum likelihood polychromatic

algorithm for ct(IMPACT) method

For polychromatic acquisition model [8] basic idsa
a set of transmission measuremédyiiss given by

K J
U, = z bk exp —Zlijlljk «(3)
k=1 j=1
Where
k energy index;
K total number of energies;
Wk Linear attenuation coefficient in pixel jat energy
k;
by Total energy that would be detected by detector i

absence of absorber for incident photons of
energyEy.

b, Is given[8] by using eq(4)

Where

ik Emitted source spectrum (number of photons);
Sk Detector sensitivity (dimensionless);

Ep Photon energy (keV).

Two extensions of ML-TR method are introduced by
B. De Man [10]. In this algorithm used Markov ranio
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field for smoothness prior and then applies incre:
sampling in the reconstructed image.

1. A Markov random field smoothness, ti
reconstruction in parts of the image for wh
many higheount measurements are available
mainly steered by the measurdata, while the
prior dominates in undeatetermined parts o
the image. Markov randonfield smoothnes
prior is used with a Huber potential functi
which is given[10] by:

w2
— for |u| <6
o(w) = I 267 N )|

|u -8
”T/Z for |l > 8,

Where §is a positive constant. The Hub
function is useful for edgpreserving purpost
The reconstruction in parts of the image,
which many highecount measurements &
available, is mainly steered by the meast
data, while the prior dominates in un-
determined parts of the image.

2. lterations are performed using a reconstruc
image at double resolution. After the |
iteration, the image is reampled to norme
resolution. This higher resolution provides
better model for sharp transitions in the im

This method isincreased number of degrees
freedom whichallows a better handling of other sour:
of artifacts, such as partial volume effect and nb
hardening, and it makes the algorithm more ro

Projection completion method

In projectioninterpolation based methc [10, 11], the
projection data corresponding to rays through tlegah
objects is considered missing data. A prior arhhégue
manually identified the missing projections andlaepd
them by interpolation of nomissing neighbour
projections (as show in figureb).

MAR uses a polynomial interpolation technique
bridge the missing projections. Most metallic imyit
like joint replacementspsteosynthesis, dental implar
or surgical clips can be prevented by using tlgorithm
in scanner technologyn this method as shown figure
6 [11], first reconstructed using filtered back projen
from original sinogram, then segmented by mean
metal and project means naretallic part then thi
projection is removed for sinogram.

zeroed

metal trace =

[
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Figure 5: linear interpolation
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Then using projection interpolation gets the prigecfor
sinogram only non-mellic portion. Then finally we
reconstructed this background projection and weogét
metallic part after merging metal parts o

» Initial FBP reconstruction
" » Segment the metals and project
» Remove metal projections for sinogram

» Interpolate (e.g. linear, polynomial, ...)
“ » Reconstruct (FBP) and paste metal parts,

Figure 6: Process of projection completion metha
So this method consists faflowing five steps [11]:

coarse image reconstructic
metallic object segmentatic
forward-projection,
projection interpolatiol
final image reconstructio

ahrwNRE

The major innovations are-fold. First, a State-of-the-art
meanshift technique in the computer visifield is used
to improve the accuracy of the metallic obj
segmentation. Second, a feedback strategy is deaet o
the interpolation step to adjust the interpolatedus
based on the prior knowledge that the interpolatddes
should not be largethan the original nes. Physical
phantom and real patient datasets are studiedainate
the efficacy of this method.

Compress sensing and sparsity driven method

For a circular source trajectorcompressed sensing
(CS) theory is presented by Jiyoung ¢, Min Woo Kim
[22,23]. Gmpressed sensing theory allows aggres
view down sampling, which results in sificant
reduction of the overall computational tirand burden of
Iterative reconstruction process even without usamg
hardware acceleration. Even using anr down-
sampling CS gives accurate reconstruction by ekhei
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sparseness of metallic objects. And also this &lgaor
useful for imposes the consistency of the sinogonata
which are based on sparsity of metallic objects.

This algorithm is useful in many complicated
scanner geometries like projection truncation inicivh
small size detector is used compared to convention
circular geometry. CS theory is applied for asyminet
placement of detector along the center [22].

Like convention CS application in this method whyaley
structure is not need. We assume non-metallic
background is reconstructed separately which called
residual sparse. As shown in figure7 [22,23] westfir
reconstructed residual image from original datacihi
consists metallic parts and it define usikq. (6) the
sinogramp, and its noisy measurement

by

Where the total beam energy without attenuation is
assumed as constaby. then an initial guess of metallic
parts are segmented out from the FDK reconstruction
using a simple threshold with a predefined value.

~ A C m;
pl=—lnb—= Zlijuj and p; = —In— (6)
0 -
j=1

Using a ray tracing, we can then identify the lowzd of

the sinogram that are corrupted by the metallitspdihe
corrupted sinogram datare replaced with the linearly
interpolated values from the surroundings, prodycn
metal removed sinogram. Suppose this interpolated

. . M
sinogram as the corrected smogrﬁ?ﬁ}i:l. Then, the

background voxel value§;}Y., are estimated using the
corrected sinogram via the FDK algorithm [22,23].

As shown in figure7, finally using LI method,
decomposition of unknown linear attenuation coédfits

{w;}*, into background reconstructiépic}ll, and the

residual imagefAu;}Y.,, the following quantities are
introduced:

~C m; ~C (7)

N
AP =p—PS=-In b &Y

oM, — )

i=1,.

r T
oriinal DATA | uncorrect 1mage

segnentation

metal image
L]
*
4
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final image
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+

Figure 7: schematic of sparsity-driven metallic artifact
removal algorithm

In addition to the computational acceleration, CS-
MAR algorithm has another important advantage. As
described before, the whole objects are not always
included within a FOV due to the limited detectizes
however the metallic parts are usually containethiwi
FOV, lterative optimization methods can be applied
without any problem.

lll.  RESULTS
1. ML-TR

Figure 8a shows the FBP reconstruction after ptimjec
completion using linear interpolation. Figure 8lowsis the
ML-EM reconstruction ignoring missing data. Figuc
shows the ML-TR reconstruction ignoring missingadat
Figure 8d repeats the reconstruction obtained MithTR
at double resolution with Huber prior [8,10].
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Figure 8: (a) FBP after projection completion. (b) ML-
EM ignoring missing data. (c) ML-TR ignoring missidgta.
(d) ML-TR at double resolution with Huber prior.

2. IMPACT

All measurement results are shown using a windowing
interval u =[0.20; 0.24] cm which corresponds to a

window of 200 HU and a level of 125 HU. The images
are 20 cnx20 cm and 258 256 pixels [8].

(a) FBP

Figure 9: Phantom (measurements). (a) FBP. (b) IMPACT. (c)
IBHC.

Fig. 9 shows the reconstructions of phantom. Th& FB
reconstruction Fig. 9(a) exhibits severe streaifaats.
The dark streaks are reduced both with IMPACT Fig.
9(b) and IBHC Fig. 9(c). This indicates that themagning
streaks are mainly due to other effects, such aseno
scatter, the nonlinear partial volume effect, ahidsang.

We can see the remaining dark streak in Fig. 9(c)—
probably due to— scatter. This also suggests that
IMPACT benefits from its correct noise model, which
makes IMPACT robust against errors corresponding to
strongly attenuated measurements.

3. CS-MAR

For physical experiments [22, 23], the projectiatadwas
measured using a clinical dental CT system (Picasieo
EWOO, Korea) that has width-truncated geometry.

3.1. Phantom Experiment Results

A physical phantom had been constructed with 10amet
nails fixed in a plate slightly tilted.

@) (b) (© (d)

Figure 10: Two different axial sections of reconstructed
phantom are shown at top and bottom. Images are
reconstructed by (a) FDK, (b) LI with a lower thne&d
(0.08), (c) LI with a higher threshold (0.12), gl CS-
MAR using a threshold (0.08).

The WBP reconstruction in Figure 10(a) has severe
streaking artifact especially between the metafials.
The artifacts are not completely removed by LI lagvn

in Figure 10(b) and (c), whose thresholds values fo
metallic parts are differently set.

From the LI results in Figure 10(b) and (c), we dav
observed interesting trade-off between threshold an
artifact removal in the LI approach. Although mkdtal
insertion can be more clearly segmented with higher
threshold, more severe metallic artifact still rémsain
background reconstruction. This is one of the
fundamental limits of the LI approach.
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However, CS-MAR is relatively free of such threghol
dependent trade-off, since such spurious segmented
noises can be effectively removed during FOCUSS
update. Those spurious segmented parts from the low
threshold value as used in Figure 10(b) can betaftdy
removed after six iterations of CS-MAR, as shown in
Figure 10(d). Furthermore, even the inner structoire
nails is visible in CS-MAR result.

3.2. In Vivo Results

Since various types of metal insertions can batkxt in
one patient’s jaw in in-vivo experiment, the threlsh
values for LI and CS-MAR were chosen in between the
lowest intensity of metal insertion and anatomic
structures.

Sample 1

Sample 2

FDK

LI

CS-MAR

Table 2: The axial sections of reconstruction from two
different in vivo samples are shown above,
respectively Each image is reconstructed using (a)
FDK, (b) LI, and (c) CS-MAR. For better comparison,
images are magnified in jaw area. All the slices are
shown at the same gray scale.

In both of LI and CS-MAR, the streaking and shading
artifacts laid in WBP are mostly gone so that wa ca
verify the dental structure in arrowed region. Etteough
the background artifacts are removed, in LI reshé
metallic insertions have spurious shape since tbelfit
artifacts were included during the segmentation.t@m
other hand, CS-MAR can reconstruct dental fillingsren
realistically by removing the spurious artifactheTCS-

MAR results, shown in table 2, were obtained uginty

23 (25) views and after three FOCUSS iterations.
Considering the size of volume data and the prigject
data, we can easily see the huge computational
advantages of CS-MAR over the fully iterative metho

I[V. CONCLUSION

Our study indicates that ML-TR reconstruction usaig
prior knowledge and using an increased number of
degrees of freedom results in effective artifactuaion.
Future work will attempt to improve the model ofeth
scanner geometry, in order to reduce the remaining
streaks. Additionally, we intend to study the uske o
explicit models for beam hardening, partial volueftect

and scatter. This will allow reducing the weight tok
prior, offering equally good artifact reduction kitess
smoothing. More complex phantoms with larger and
more attenuating metal objects and with axial gratdi
must be studied. For application in clinical rosatira
strong reduction of the computational cost of the
algorithm is required.

We have also reviewed an iterative ML algorithm @&
(IMPACT) that prevents beam-hardening artifacts.
Excellent results were obtained on phantom
measurements. The algorithm has been compareceto th
post reconstruction approach, and the degree afhbea
hardening correction was comparable for both allyors.

A strong reduction of computation time is requitetore
being used routinely. Preliminary results indicalat
metal artifact reduction is a very promising apgticn
for this new algorithm. Previous work has invesiigh
the importance of the correct noise model. Thisepap
addresses a second important cause of metal #sfifac
namely beam hardening. Further research will extaed
algorithm to include a prior, a model for scattand a
model for the nonlinear partial volume effect.

Since the metallic objects usually occupy spargpert
within a FOV, we can apply compressed sensing
approach to MAR problem. The obtaineld penalized
maximum likelihood criterion was implemented by a
reweighted norm approach using FOCUSS. In phantom
and in vivo experiments, the proposed CS-MAR
outperformed FDK and LI in both restore the origina
shape of the metallic inserts as well as removimg t
shadow artifact that could lead to misdiagnosis.
Furthermore, compressed sensing theory allows
aggressive view down sampling, which results in
significant reduction of the overall computatioriaig of
CS-MAR.
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