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I.  INTRODUCTION  

The main device in dental radiology is the X-ray 
projection image, which gives the structure of bone, soft 
tissues and Teeth. However, certain diagnostic and 
operative tasks often re-quire more precise knowledge of 
the three-dimensional (3-D) structure of oral tissues than 
is available in a single X-ray pro- jection image or a 
panoramic image [1, 2].   The artifact is a radial noise 
generated from the part of the metal when taking a CT 
image of a metalliferous verifiable object. [3] 

In X-ray computed tomography (CT), the presence of 
strongly attenuating objects - such as dental fillings, 
surgical clips - causes typical streak artifacts in the 
reconstructed images (figure 1).[4] 

 

 
Figure 1: An example of metal streak artifacts in X-ray 

computed tomography. 

According to B. De Man [5] main sources of metal 
artifacts are classify in four categories: Physics based 
which include beam hardening and under sampling 
artifacts, Patient based which include metallic and motion 
artifacts, Scanner based in which artifacts caused by 
detector sensitivity and mechanical instability (see in 
below table 1), Spiral based in which artifacts arise due to 

spiral interpolation [6, 7]. 
 

Table 1: Sources of metal artifacts in X-ray 
computed tomography. 
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In the following sections we describe the overview of 
various methods which are useful for reduce metal 
artifacts. In order to reduce the metal artifacts, there are 
some approaches [3] based on signal processing. Many 
algorithms are presented for reduction of metal streak 
artifacts in x-ray CT. Mainly those algorithm worked on 
reconstruction of projection data and segmentation of 
image in metallic and non-metallic objects and finally 
restoration technique which used for restore the image 
information by means of reduce the artifacts by using 
filtered back projection method for reconstruction [8], 
iterative reconstruction method [9], projection 
interpolation method [10]. For segmentation purpose 
they used thresholding technique [11]. 

The majority of MAR-methods consist of a modified 
reconstruction algorithm, in which metal objects are 
usually considered opaque and data corresponding to rays 
through the metal objects are defined as missing 
data.[10].Typically, MAR algorithms comprise two 
steps: a) metal trace identification, in which the 
projections corrupted by metallic implants are identified 
and b) artifact reduction, through which the identified 
missing projections are compensated for or treated in 
such a way that the associated streaking artifacts are 
mitigated. 

Metal traces are conventionally identified by 
segmentation of metallic implants in FBP reconstructed 
images using thresholding [11] or clustering techniques 
[12], followed by reprojection of the obtained metal-only 
images onto the projection or sinogram domain. FBP is 
based on the assumption that every pixel can be 
characterized by a single parameter � ,the linear 
attenuation coefficient, and that the logarithm of the 
measurement is the line integral of � [8]. 

Other approaches are based on segmentation of metal 
traces directly in raw sinogram data using active contours 
[13], curve detection [14] and Markov random field 
(MRF) [10] techniques. The second step of MAR 
methods has been mainly explored by two classes of 
algorithms: projection completion and iterative image 
reconstruction. 

Projected completion aims at interpolating the missing 
projections from their neighbors through linear, cubic 
spine and wavelet [15] interpolations or iterative in 
painting techniques using curvature-driven diffusion, total 
variation (TV) [13, 16], and wavelet regularization [17]. 
Bal and Spies proposed to replace the missing projections 
by the projections obtained from the forward projection 
of a tissue-classified CT image, namely tissue-class 
model or prior image. The problem with this approach is 
that the prior sinogram projections over missing regions 
(metal traces) are not well fitted with the projections of 
the original sinogram in immediate neighboring regions 
and hence, there is always a risk for discontinuities and 
generation of new artifacts. Recently, to solve this fitness 
problem, referred to as normalized MAR (NMAR), the 
original sinogram is normalized by the syndrome of prior 
image, thereby flattening neighboring projections. Then, 

the missing data are linearly interpolated on the resulting 
sinogram is de-normalized. Projection completion has 
also been combined with algorithms that exploit the 
information hidden in low- and high-pass filtered 
sinograms [15] or low- and high-pass filtered 
reconstructed images. This class of algorithms is often 
fast and computationally appealing, however, if not 
efficiently implemented, these techniques might produce 
new artifacts. In fact, their efficiency depends on how 
robustly they can exploit the still available projection data 
even a prior knowledge in the recovery of missing data. 

 On the other hand, iterative reconstruction algorithms 
[9] establish another class of algorithms that, unlike FBP, 
attempt to frame the reconstruction problem in a way that 
more closely resembles reality. They can be adapted to 
missing data situations by down-weighting [8], ignoring 
the contribution of the corrupted projections, or can be 
tailored to polychromatic propagation models in order to 
reduce both beam hardening and metallic artifacts, [19]. 
However, this class of algorithms cannot entirely 
eradicate severe metallic artifacts; hence their initiation 
and combination [20] with projection completion 
techniques have also been investigated. But iterative 
image reconstruction techniques are still memory-
demanding and computationally intensive. To reduce the 
computational complexity of this class of MAR 
algorithms, a region-based iterative reconstruction 
method in this fully polychromatic reconstruction model 
is used for metallic regions, while a simpler 
monochromatic model is used in other regions. It is worth 
noting that the model-based iterative algorithms have also 
been successfully applied for sinogram restoration and 
beam hardening correction. 

 

II.  METHODS 

 
I. Iterative reconstruction method 

 
We also apply iterative reconstruction [9] to reduce 

metal streak artifacts. The major advantage of this 
approach is the possibility to use a model of the 
acquisition, taking into account polychromaticity, scatter, 
noise, and any other imperfections. A general iterative 
reconstruction scheme is shown in figure 3. 

In this method first we acquired image and 
calculated sinogram data. Then we compared this 
sinogram data with measured sinogram. If both are not 
matched those data are transformed in image domain 
further and corrected this. Now corrected image 
reconstructed again and again until calculated and 
measured data are not matched. 
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Figure 3: Iterative Reconstruction 

So disadvantage of this method is memory demanding for 
storage of all those data and time computation is very 
much. 

  

II. Maximum Likelihood TRansmission method 
(ML-TR) 
 
Basic theory [8, 10] 
For monochromatic acquisition model the basic idea is: 
given a set of transmission measurements {��}���	 , find 
the distribution of linear attenuation coefficients  {�
}���� that maximizes the log-likelihood (logarithm of 
the likelihood). [10] 
 

ℒ = �(�� ⋅  ln����� − ���)�
���  … … … … … (1)      

Where ��� is the expected number of photons detected 
along projection line � given the current reconstruction {�
}. �� is assumed to be a Poisson realization of ���. a 
simple acquisition model for transmission tomography is 
given by  

��� =  �� exp #− � $
���
�

��� % … … … … … (2) 

Where is the number of photons that would be detected in 
the absence of absorber (blank scan) and is the effective 
intersection length of projection line with pixel is 
measured by a calibration scan. In figure 4 we see 
simulated energy spectrum of intensity��', where ��' is 
total energy that would be detector by detector. 
The algorithm is based on the transmission maximum- 
likelihood algorithm (ML-TR) [8, 10and 21].  ML-TR 
reconstructs an attenuation image by optimizing the 
likelihood, assuming that the measured detector read-outs 
have a Poisson distribution. 
 

 
 

Figure 4:  the line represents a simulated spectrum ()* 
(normalized) provided by Siemens 

 

As a result, ML-TR attributes less weight to low-count 
detector read-outs, making the algorithm inherently 
robust against other sources of artifacts that are most 
prominent in directions of low counts, such as beam 
hardening, scatter, and partial volume effect. 

In this method first take measured data and one blank 
sinogram data, compare both data and then update data 
is reconstructed using linear interpolation method. 
Finley reprojection of them is taken and this procedure is 
done until sufficient data is not get. 
 

 
III. Iterative maximum likelihood polychromatic 

algorithm for ct(IMPACT) method 

For polychromatic acquisition model [8] basic idea is: 
a set of transmission measurements ��� is given by  
 

��� =  � ��'  +
'�� exp #− � $
���'

�
��� % … … … … … (3) 

Where  
k energy index; 
K total number of energies; ��'   Linear attenuation coefficient in pixel jat energy 

k; ��'   Total energy that would be detected by detector i 
absence of absorber for incident photons of 
energy -' . 

 ��'  Is given[8] by using eq(4) 
 ��' = $
' ⋅ .' ⋅ -' … … … … … (4) 

 
Where $
' Emitted source spectrum (number of photons);  .' Detector sensitivity (dimensionless); -'  Photon energy (keV). 

 
Two extensions of ML-TR method are introduced by 

B. De Man [10]. In this algorithm used Markov random 

Energy k 

Intensity  ��' 
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field for smoothness prior and then applies increased 
sampling in the reconstructed image. 

 
1. A Markov random field smoothness, the  

reconstruction  in  parts  of  the image  for  which  
many  high-count measurements are available, is 
mainly steered by the measured 
prior  dominates in  under-determined parts of  
the image. Markov random field smoothness 
prior is used with a Huber potential function 
which is given[10] by:  

 

∅(μ) =
234
35

   

μ6

2δ6              for |μ| < δ

 |μ| � δ
2=

δ
      for |μ| ⩾ δ,

 
Where δ is a positive constant. The Huber 
function is useful for edge-preserving purpose. 
The reconstruction in parts of the image, for 
which many high-count measurements are 
available, is mainly steered by the measured 
data, while the prior dominates in under
determined parts of the image. 

 
 

2. Iterations are performed using a reconstruction 
image at double resolution. After the last 
iteration, the image is re-sampled to normal 
resolution. This higher resolution provides a 
better model for sharp transitions in the image.
  

This method is increased number of degrees of 
freedom which allows a better handling of other sources 
of artifacts, such as partial volume effect and beam 
hardening, and it makes the algorithm more robust.

 
 

IV. Projection completion method 
 
In projection interpolation based methods

projection data corresponding to rays through the metal 
objects is considered missing data. A prior art technique
manually identified the missing projections and replaced 
them by interpolation of non-missing 
projections (as show in figure5). 

MAR uses a polynomial interpolation technique to 
bridge the missing projections. Most metallic implants 
like joint replacements, osteosynthesis, dental implants, 
or surgical clips can be prevented by using this a
in scanner technology. In this method as shown in 
6 [11], first reconstructed using filtered back projection
from original sinogram, then segmented by means of 
metal and project means non-metallic part then this 
projection is removed for sinogram. 
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interpolation based methods [10, 11], the 
projection data corresponding to rays through the metal 
objects is considered missing data. A prior art technique 
manually identified the missing projections and replaced 

missing neighbour 

MAR uses a polynomial interpolation technique to 
bridge the missing projections. Most metallic implants 

osteosynthesis, dental implants, 
or surgical clips can be prevented by using this algorithm 

In this method as shown in figure 
, first reconstructed using filtered back projection 

from original sinogram, then segmented by means of 
metallic part then this 

Figure 5: linear interpolation

Then using projection interpolation gets the projection for 
sinogram only non-metallic portion. Then finally we 
reconstructed this background projection and we get only 
metallic part after merging metal parts on it.

Figure 6: Process of projection completion method

So this method consists of following 

1. coarse image reconstruction, 
2. metallic object segmentation,
3. forward-projection, 
4. projection interpolation,
5. final image reconstruction. 

The major innovations are 2
mean-shift technique in the computer vision 
to improve the accuracy of the metallic object 
segmentation. Second, a feedback strategy is developed in 
the interpolation step to adjust the interpolated value 
based on the prior knowledge that the interpolated values 
should not be larger than the original o
phantom and real patient datasets are studied to evaluate 
the efficacy of this method. 

V. Compress sensing and sparsity driven 
 

For a circular source trajectory, 
(CS) theory is presented by Jiyoung Choi
[22,23]. Compressed sensing theory allows aggressive 
view down sampling, which results in signi
reduction of the overall computational time 
Iterative reconstruction process even without using any 
hardware acceleration. Even using angula
sampling CS gives accurate reconstruction by exploit the 
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linear interpolation  

Then using projection interpolation gets the projection for 
llic portion. Then finally we 

reconstructed this background projection and we get only 
metallic part after merging metal parts on it. 

 

Process of projection completion method 

following five steps [11]:  

coarse image reconstruction,  
metallic object segmentation, 

projection,  
projection interpolation, 
nal image reconstruction.  

The major innovations are 2-fold. First, a State-of-the-art 
shift technique in the computer vision field is used 

improve the accuracy of the metallic object 
segmentation. Second, a feedback strategy is developed in 
the interpolation step to adjust the interpolated value 
based on the prior knowledge that the interpolated values 

than the original ones. Physical 
phantom and real patient datasets are studied to evaluate 

Compress sensing and sparsity driven method 

For a circular source trajectory, compressed sensing 
(CS) theory is presented by Jiyoung Choi, Min Woo Kim 

ompressed sensing theory allows aggressive 
view down sampling, which results in significant 
reduction of the overall computational time and burden of 
Iterative reconstruction process even without using any 
hardware acceleration. Even using angular down-
sampling CS gives accurate reconstruction by exploit the 
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sparseness of metallic objects. And also this algorithm 
useful for imposes the consistency of the sinogram of data 
which are based on sparsity of metallic objects. 

This algorithm is useful in many complicated 
scanner geometries like projection truncation in which 
small size detector is used compared to convention 
circular geometry. CS theory is applied for asymmetric 
placement of detector along the center [22]. 

Like convention CS application in this method whole jaw 
structure is not need. We assume non-metallic 
background is reconstructed separately which called 
residual sparse. As shown in figure7 [22,23] we first 
reconstructed residual image from original data which 
consists metallic parts and it define using Eq. (6) the 
sinogram BCD  and its noisy measurement B
.  
 

BCD = − ln E
�F =  � $
���
G

���  HIJ  B
 = − ln K
�F … … … (6) 

Where the total beam energy without attenuation is 
assumed as constant �F. then an initial guess of metallic 
parts are segmented out from the FDK reconstruction 
using a simple threshold with a predefined value. 
 
Using a ray tracing, we can then identify the locations of 
the sinogram that are corrupted by the metallic parts. The 
corrupted sinogram data are replaced with the linearly 
interpolated values from the surroundings, producing a 
metal removed sinogram. Suppose this interpolated 

sinogram as the corrected sinogram MpND OP
��Q
. Then, the 

background voxel values {�
}
��G  are estimated using the 
corrected sinogram via the FDK algorithm [22,23].  
 
As shown in figure7, finally using LI method, 
decomposition of unknown linear attenuation coefficients {�
}
��G  into background reconstruction M�
OP
��G

, and the 

residual images {∆�
}
��G , the following quantities are 
introduced: ∆B
 =  B
 − BCD S = − ln K
�F − BCD S … … … (7) 

 

∆BCD = BCD − BCD S = − ln E
�F − BCD S = � $
���
G

��� ,
  U = 1, … , V, … … … (8) 

 

 
 
 

Figure 7: schematic of sparsity-driven metallic artifact 
removal algorithm 

 
In addition to the computational acceleration, CS-

MAR algorithm has another important advantage.  As 
described before, the whole objects are not always 
included within a FOV due to the limited detector size; 
however the metallic parts are usually contained within 
FOV, Iterative optimization methods can be applied 
without any problem. 

 

III.  RESULTS 

1. ML-TR 

Figure 8a shows the FBP reconstruction after projection 
completion using linear interpolation. Figure 8b shows the 
ML-EM reconstruction ignoring missing data.   Figure 8c 
shows the ML-TR reconstruction ignoring missing data. 
Figure 8d repeats the reconstruction obtained with ML-TR 
at double resolution with Huber prior [8,10]. 

 

 

a 
 

b 
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d 

Figure 8: (a) FBP after projection completion.  (b) ML-
EM ignoring missing data. (c) ML-TR ignoring missing data. 

(d) ML-TR at double resolution with Huber prior. 

 

2. IMPACT 
 
All measurement results are shown using a windowing 
interval � =[0.20; 0.24] cm which corresponds to a 
window of 200 HU and a level of 125 HU. The images 
are 20 cm ×20 cm and 256× 256 pixels [8]. 

 

 
(a) FBP 

 
(b)  IMPACT 

 
(c) IBHC 

Figure 9: Phantom (measurements). (a)  FBP. (b) IMPACT. (c) 
IBHC. 

 

Fig. 9 shows the reconstructions of phantom. The FBP 
reconstruction Fig. 9(a) exhibits severe streak artifacts. 
The dark streaks are reduced both with IMPACT Fig. 
9(b) and IBHC Fig. 9(c). This indicates that the remaining 
streaks are mainly due to other effects, such as noise, 
scatter, the nonlinear partial volume effect, and aliasing. 
We can see the remaining dark streak in Fig. 9(c)—
probably due to— scatter. This also suggests that 
IMPACT benefits from its correct noise model, which 
makes IMPACT robust against errors corresponding to 
strongly attenuated measurements. 

3. CS-MAR 
 
For physical experiments [22, 23], the projection data was 
measured using a clinical dental CT system (Picasso Trio, 
EWOO, Korea) that has width-truncated geometry. 
 
3.1. Phantom Experiment Results  
 
A physical phantom had been constructed with 10 metal 
nails fixed in a plate slightly tilted. 
 

(a) (b) (c) (d) 
 

Figure 10: Two different axial sections of reconstructed 
phantom are shown at top and bottom. Images are 

reconstructed by (a) FDK, (b) LI with a lower threshold 
(0.08), (c) LI with a higher threshold (0.12), and (d) CS-

MAR using a threshold (0.08). 
 
The WBP reconstruction in Figure 10(a) has severe 
streaking artifact especially between the metallic nails. 
The artifacts are not completely removed by LI as shown 
in Figure 10(b) and (c), whose thresholds values for 
metallic parts are differently set. 
 
From the LI results in Figure 10(b) and (c), we have 
observed interesting trade-off between threshold and 
artifact removal in the LI approach. Although metallic 
insertion can be more clearly segmented with higher 
threshold, more severe metallic artifact still remains in 
background reconstruction. This is one of the 
fundamental limits of the LI approach. 
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However, CS-MAR is relatively free of such threshold 
dependent trade-off, since such spurious segmented 
noises can be effectively removed during FOCUSS 
update. Those spurious segmented parts from the low 
threshold value as used in Figure 10(b) can be effectively 
removed after six iterations of CS-MAR, as shown in 
Figure 10(d). Furthermore, even the inner structure of 
nails is visible in CS-MAR result.  
 
3.2. In Vivo Results 
 
 Since various types of metal insertions can be located in 
one patient’s jaw in in-vivo experiment, the threshold 
values for LI and CS-MAR were chosen in between the 
lowest intensity of metal insertion and anatomic 
structures. 

 

 Sample 1 Sample 2 

F
D

K
 

  

LI
 

  

C
S

-M
A

R
 

  
 
Table 2: The axial sections of reconstruction from two 

different in vivo samples are shown above, 
respectively. Each image is reconstructed using (a) 

FDK, (b) LI, and (c) CS-MAR. For better comparison, 
images are magnified in jaw area. All the slices are 

shown at the same gray scale. 
 
In both of LI and CS-MAR, the streaking and shading 
artifacts laid in WBP are mostly gone so that we can 
verify the dental structure in arrowed region. Even though 
the background artifacts are removed, in LI result the 
metallic insertions have spurious shape since the metallic 
artifacts were included during the segmentation. On the 
other hand, CS-MAR can reconstruct dental fillings more 
realistically by removing the spurious artifacts. The CS-

MAR results, shown in table 2, were obtained using only 
23 (25) views and after three FOCUSS iterations. 
Considering the size of volume data and the projection 
data, we can easily see the huge computational 
advantages of CS-MAR over the fully iterative methods. 

 

IV.  CONCLUSION  

Our study indicates that ML-TR reconstruction using a-
prior knowledge and using an increased number of 
degrees of freedom results in effective artifact reduction. 
Future work will attempt to improve the model of the 
scanner geometry, in order to reduce the remaining 
streaks. Additionally, we intend to study the use of 
explicit models for beam hardening, partial volume effect 
and scatter. This will allow reducing the weight of the 
prior, offering equally good artifact reduction with less 
smoothing. More complex phantoms with larger and 
more attenuating metal objects and with axial gradients 
must be studied. For application in clinical routine, a 
strong reduction of the computational cost of the 
algorithm is required. 

We have also reviewed an iterative ML algorithm for CT 
(IMPACT) that prevents beam-hardening artifacts. 
Excellent results were obtained on phantom 
measurements. The algorithm has been compared to the 
post reconstruction approach, and the degree of beam-
hardening correction was comparable for both algorithms. 
A strong reduction of computation time is required before 
being used routinely. Preliminary results indicate that 
metal artifact reduction is a very promising application 
for this new algorithm. Previous work has investigated 
the importance of the correct noise model. This paper 
addresses a second important cause of metal artifacts, 
namely beam hardening. Further research will extend the 
algorithm to include a prior, a model for scatter, and a 
model for the nonlinear partial volume effect. 

Since the metallic objects usually occupy sparse support 
within a FOV, we can apply compressed sensing 
approach to MAR problem. The obtained  l1  penalized 
maximum likelihood criterion was implemented by a 
reweighted norm approach using FOCUSS. In phantom 
and in vivo experiments, the proposed CS-MAR 
outperformed FDK and LI in both restore the original 
shape of the metallic inserts as well as removing the 
shadow artifact that could lead to misdiagnosis. 
Furthermore, compressed sensing theory allows 
aggressive view down sampling, which results in 
significant reduction of the overall computational time of 
CS-MAR. 
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